Questions

Q1.

The curve C with equation

$$
y=\frac{p-3 x}{(2 x-q)(x+3)} \quad x \in \mathbb{R}, x \neq-3, x \neq 2
$$

where p and q are constants, passes through the point $\left(3, \frac{1}{2}\right)$ and has two vertical asymptotes with equations $x=2$ and $x=-3$
(a) (i) Explain why you can deduce that $q=4$
(ii) Show that $p=15$

Figure 4
Figure 4 shows a sketch of part of the curve C. The region R, shown shaded in Figure 4, is bounded by the curve C, the x-axis and the line with equation $x=3$
(b) Show that the exact value of the area of R is aln $2+b \ln 3$, where a and b are rational constants to be found.

Q2.

Figure 2
Figure 2 shows a sketch of part of the curve C with equation $y=x \ln x, \quad x>0$
The line l is the normal to C at the point $P(\mathrm{e}, \mathrm{e})$
The region R, shown shaded in Figure 2, is bounded by the curve C, the line $/$ and the x-axis. Show that the exact area of R is $A \mathrm{e}^{2}+B$ where A and B are rational numbers to be found.

Q3.

Figure 3
The curve shown in Figure 3 has parametric equations

$$
x=6 \sin t \quad y=5 \sin 2 t \quad 0 \leqslant t \leqslant \frac{\pi}{2}
$$

The region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.
(a) (i) Show that the area of R is given by $\int_{0}^{\frac{\pi}{2}} 60 \sin t \cos ^{2} t \mathrm{~d} t$
(ii) Hence show, by algebraic integration, that the area of R is exactly 20

Figure 4
Part of the curve is used to model the profile of a small dam, shown shaded in Figure 4. Using the model and given that

- x and y are in metres
- the vertical wall of the dam is 4.2 metres high
- there is a horizontal walkway of width $M N$ along the top of the dam
(b) calculate the width of the walkway.

Q4.

Figure 2
Figure 2 shows a sketch of part of the curve with equation

$$
y=(\ln x)^{2} \quad x>0
$$

The finite region R, shown shaded in Figure 2, is bounded by the curve, the line with equation $x=2$, the x-axis and the line with equation $x=4$

The table below shows corresponding values of x and y, with the values of y given to 4 decimal places.

x	2	2.5	3	3.5	4
y	0.4805	0.8396	1.2069	1.5694	1.9218

(a) Use the trapezium rule, with all the values of y in the table, to obtain an estimate for the area of R, giving your answer to 3 significant figures.
(b) Use algebraic integration to find the exact area of R, giving your answer in the form

$$
y=a(\ln 2)^{2}+b \ln 2+c
$$

where a, b and c are integers to be found.

Mark Scheme

Q1.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	The asymptote is found where $2 x-q=0$ Hence $q=4$	B1	This mark is given for explaining that the asymptote at $x=2$ is a solution of $2 x-q=0$
	$\begin{aligned} & y=\frac{p-3 x}{(2 x-4)(x+3)} \\ & \frac{1}{2}=\frac{p-9}{(6-4)(3+3)} \end{aligned}$	M1	This mark is given for substituting $x=3$, $y=\frac{1}{2}(\operatorname{and} q=4)$
(b)	$\frac{15-3 x}{(2 x-4)(x+3)}=\frac{A}{(2 x-4)}+\frac{B}{(x+3)}$	M1	This mark is given for a method to use partial fractions
	$=\frac{1.8}{(2 x-4)}-\frac{2.4}{(x+3)}$	M1	This mark is given for finding values for A and B
	$=\frac{0.9}{(x-2)}-\frac{2.4}{(x+3)}$	A1	This mark is given for a fully simplified expression
	$\begin{aligned} I & =\int \frac{15-3 x}{(2 x-4)(x+3)} \mathrm{d} x \\ & =m \ln (2 x-4)+n \ln (x+3) \end{aligned}$	M1	This mark is given for a method to integrate to find the area of R
	$=0.9 \ln (2 x-4)+2.4 \ln (x+3)$	A1	This mark is given for a correct expression for the area of R
	Area $R=[0.9 \ln (2 x-4)-2.4 \ln (x+3)]_{3}^{5}$	M1	This mark is given for deducing an expression for the area of R $(y=0 \text { when } x=5)$
	$\begin{aligned} & =[0.9 \ln 6-2.4 \ln 8]-[0.9 \ln 2-2.4 \ln 6] \\ & =[0.9 \ln 6+2.4 \ln 6]-[7.2 \ln 2+0.9 \ln 2] \\ & =3.3 \ln 6-8.1 \ln 2 \\ & =3.3 \ln 3+3.3 \ln 2-8.1 \ln 2 \end{aligned}$	M1	This mark is given for a method to find the exact area of R
	$=3.3 \ln 3-4.8 \ln 2$	A1	This mark is given for a correct value of the area of R with $a=3.3$ and $b=4.8$

Q2.

Question	Scheme	Marks	AOs
	$C: y=x \ln x ; l$ is a normal to C at $P(\mathrm{e}, \mathrm{e})$ Let x_{A} be the x-coordinate of where l cuts the x-axis		
	$\underline{d y}=\ln x+x\left(\frac{1}{x}\right)$	M1	2.1
		A1	1.1 b
	$\begin{gathered} x=\mathrm{e}, m_{T}=2 \Rightarrow m_{N}=-\frac{1}{2} \Rightarrow y-\mathrm{e}=-\frac{1}{2}(x-\mathrm{e}) \\ y=0 \Rightarrow-\mathrm{e}=-\frac{1}{2}(x-\mathrm{e}) \Rightarrow x=\ldots \end{gathered}$	M1	3.1a
	l meets x-axis at $x=3 \mathrm{e}$ (allow $x=2 \mathrm{e}+\mathrm{elne}$)	A1	1.1 b
	\{Areas:\} either $\int_{1}^{e} x \ln x \mathrm{dx}=[\ldots]_{1}^{e}=\ldots \quad$ or $\frac{1}{2}\left(\right.$ (their $\left.\left.x_{A}\right)-\mathrm{e}\right) \mathrm{e}$	M1	2.1
	$\{x x \ln x \mathrm{~d} x=\} \frac{1}{2} x^{2} \ln x-\int \frac{1}{x} \cdot\left(\frac{x^{2}}{2}\right)\{\mathrm{d} x\}$	M1	2.1
	$\left\{=\frac{1}{2} x^{2} \ln x-\left\{\frac{1}{2} x\{\operatorname{dx}\}\right\}=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}\right.$	dM1	1.1 b
	$\left\{=\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x\{\mathrm{~d} x\}\right\}=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}$	A1	1.1 b
	$\begin{aligned} \text { Area }\left(R_{1}\right)=\int_{1}^{e} x \ln x \mathrm{dx} x & =[\ldots]_{1}^{e}=\ldots ; \text { Area }\left(R_{2}\right)=\frac{1}{2}\left(\left(\text { their } x_{A}\right)-\mathrm{e}\right) \mathrm{e} \\ \text { and so, Area }(R) & =\text { Area }\left(R_{1}\right)+\text { Area }\left(R_{2}\right) \quad\left\{=\frac{1}{4} \mathrm{e}^{2}+\frac{1}{4}+\mathrm{e}^{2}\right\} \end{aligned}$	M1	3.1a
	Area $(R)=\frac{5}{4} \mathrm{e}^{2}+\frac{1}{4}$	A1	1.1 b
		(10)	

Notes for Question	
M1:	Differentiates by using the product rule to give $\ln x+x\left(\right.$ their $\left.\mathrm{g}^{\prime}(x)\right)$, where $g(x)=\ln x$
Al:	Correct differentiation of $y=x \ln x$, which can be un-simplified or simplified
M1:	Complete strategy to find the x coordinate where their normal to C at $P(\mathrm{e}, \mathrm{e})$ meets the x-axis i.e. Sets $y=0$ in $y-\mathrm{e}=m_{N}(x-\mathrm{e})$ to find $x=\ldots$
Note:	m_{T} is found by using calculus and $m_{N} \neq m_{T}$
Al:	l meets x-axis at $x=3 \mathrm{e}$, allowing un-simplified values for x such as $x=2 \mathrm{e}+\mathrm{elne}$
Note:	Allow $x=$ awit 8.15
M1:	Scored for either - Area under curve $=\int_{1}^{e} x \ln x \mathrm{~d} x=[\ldots]_{1}^{e}=\ldots$, with limits of e and 1 and some attempt to substitute these and subtract - or Area under line $=\frac{1}{2}\left(\left(\right.\right.$ their $\left.\left.x_{A}\right)-\mathrm{e}\right) \mathrm{e}$, with a valid attempt to find x_{A}
M1:	Integration by parts the correct way around to give $A x^{2} \ln x-\int B\left(\frac{x^{2}}{x}\right)\{\mathrm{dx}\} ; A \neq 0, B>0$
dM1:	dependent on the previous M mark Integrates the second term to give $\pm \lambda x^{2} ; \lambda \neq 0$
A1:	$\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}$
M1:	Complete strategy of finding the area of R by finding the sum of two key areas. See scheme.
Al:	$\frac{5}{4} \mathrm{e}^{2}+\frac{1}{4}$
Note:	Area $\left(R_{2}\right)$ can also be found by integrating the line l between limits of e and their x_{A} i.e. $\operatorname{Area}\left(R_{2}\right)=\int_{\mathrm{e}}^{\text {their } x_{A}}\left(-\frac{1}{2} x+\frac{3}{2} \mathrm{e}\right) \mathrm{d} x=[\ldots]_{e}^{\text {teid } x_{A}}=\ldots$
Note:	Calculator approach with no algebra, differentiation or integration seen: - Finding l cuts through the x-axis at awrt 8.15 is $2^{\text {nd }} \mathrm{M} 12^{\text {nd }} \mathrm{A} 1$ - Finding area between curve and the x-axis between $x=1$ and $x=\mathrm{e}$ to give awrt 2.10 is $3^{\text {rd }}$ M1 - Using the above information (must be seen) to apply Area $(R)=2.0972 \ldots+7.3890 \ldots=9.4862 \ldots$ is final M1 Therefore, a maximum of 4 marks out of the 10 available.

Q3.

Question	Scheme	Marks	AOs
(a)(i)	$y \times \frac{\mathrm{d} x}{\mathrm{~d} t}=5 \sin 2 t \times 6 \cos t$ or $5 \times 2 \sin t \cos t \times 6 \cos t$	M1	1.2

Notes:

(a)(i)

M1: Attempts to multiply y by $\frac{\mathrm{d} x}{\mathrm{~d} t}$ to obtain $A \sin 2 t \cos t$ but may apply $\sin 2 t=2 \sin t \cos t$ here
dMI: Attempts to use $\sin 2 t=2 \sin t \cos t$ within an integral which may be implied by
e.g. $A \int \sin 2 t \times \cos t \mathrm{~d} t=\int k \sin t \cos ^{2} t \mathrm{~d} t$
$A l^{*}$: Fully correct work leading to the given answer.
This must include $\sin 2 t=2 \sin t \cos t$ or e.g. $5 \sin 2 t=10 \sin t \cos t$ seen explicitly in their proof and a correct intermediate line that includes an integral sign and the "d f "
Allow the limits to just "appear" in the final answer e.g. working need not be shown for the limits.
(a)(ii)

Ml: Obtains $\int 60 \sin t \cos ^{2} t \mathrm{~d} t=k \cos ^{3} t$. This may be attempted via a substitution of $u=\cos t$ to obtain
$\int 60 \sin t \cos ^{2} t \mathrm{~d} t=k u^{3}$
Al: Correct integration $-20 \cos ^{3} t$ or equivalent e.g. $-20 u^{3}$
Al^{*} : Rigorous proof with all aspects correct including the correct limits and the $0-(-20)$ and

$$
\text { not just: } \quad-20 \cos ^{3} \frac{\pi}{2}-\left(-20 \cos ^{3} 0\right)=20
$$

(b)

M1: Uses the given model and attempts to find value(s) of t when $\sin 2 t=\frac{4.2}{5}$. Look for $2 t=\sin ^{-1} \frac{4.2}{5} \Rightarrow t=\ldots$
Al: At least one correct value for t, correct to 2 dp . FYI $t=0.4986 \ldots, 1.072 \ldots$ or in degrees $t=28.57 \ldots, 61.42 \ldots$
dMl: Attempts to find TWO distinct values of x when $\sin 2 t=\frac{4.2}{5}$. Condone poor trig work and allow this mark if 2 values of x are attempted from 2 values of t.
Al: Both values correct to 2 dp . NB $x=2.869 \ldots, 5.269 \ldots$

Or may take Cartesian approach

$5 \sin 2 t=4.2 \Rightarrow 10 \sin t \cos t=4.2 \Rightarrow 10 \frac{x}{6} \sqrt{1-\frac{x^{2}}{36}}=4.2 \Rightarrow x^{4}-36 x^{2}+228.6144=0 \Rightarrow x=2.869 \ldots, 5.269 \ldots$
M1: For converting to Cartesian form A1: Correct quartic M1: Solves quartic A1: Correct values
Al: 2.40 metres or 240 cm
Allow awrt 2.40 m or allow 2.4 m (not awrt 2.4 m) and allow awrt 240 cm . Units are required.

Q4.

Question	Scheme	Marks	AOs
(a)	$h=0.5$	B1	1.1b
	$A \approx \frac{1}{2} \times \frac{1}{2}\{0.4805+1.9218+2(0.8396+1.2069+1.5694)\}$	M1	1.1b
	$=2.41$	A1	1.1b
		(3)	
(b)	$\int(\ln x)^{2} \mathrm{~d} x=x(\ln x)^{2}-\int x \times \frac{2 \ln x}{x} \mathrm{~d} x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\begin{gathered} =x(\ln x)^{2}-2 \int \ln x \mathrm{~d} x=x(\ln x)^{2}-2\left(x \ln x-\int \mathrm{d} x\right) \\ =x(\ln x)^{2}-2 \int \ln x \mathrm{~d} x=x(\ln x)^{2}-2 x \ln x+2 x \end{gathered}$	dM1	2.1
	$\begin{gathered} \int_{2}^{4}(\ln x)^{2} \mathrm{~d} x=\left[x(\ln x)^{2}-2 x \ln x+2 x\right]_{2}^{4} \\ =4(\ln 4)^{2}-2 \times 4 \ln 4+2 \times 4-\left(2(\ln 2)^{2}-2 \times 2 \ln 2+2 \times 2\right) \\ =4(2 \ln 2)^{2}-16 \ln 2+8-2(\ln 2)^{2}+4 \ln 2-4 \end{gathered}$	ddM1	2.1
	$=14(\ln 2)^{2}-12 \ln 2+4$	A1	1.1b
		(5)	
(8 marks)			
	Notes		

(a)

B1: Correct strip width. May be implied by $\frac{1}{2} \times \frac{1}{2}\{\ldots\}$ or $\frac{1}{4} \times\{\ldots\}$
M1: Correct application of the trapezium rule.
Look for $\frac{1}{2} \times " h "\{0.4805+1.9218+2(0.8396+1.2069+1.5694)\}$ condoning slips in the digits.
The bracketing must be correct but it is implied by awrt 2.41
A1: 2.41 only. This is not awrt
(b)

M1: Attempts parts the correct way round to achieve $\alpha x(\ln x)^{2}-\beta \int \ln x \mathrm{~d} x$ o.e.
May be unsimplified (see scheme).
Watch for candidates who know or learn $\int \ln x \mathrm{~d} x=x \ln x-x$
who may write $\int(\ln x)^{2} \mathrm{~d} x=\int(\ln x)(\ln x) \mathrm{d} x=\ln x(x \ln x-x)-\int \frac{x \ln x-x}{x} \mathrm{~d} x$
A1: Correct expression which may be unsimplified
dM1: Attempts parts again to (only condone coefficient errors) to
achieve $\alpha x(\ln x)^{2}-\beta x \ln x \pm \gamma x$ o.e.
ddM1: Applies the limits 4 and 2 to an expression of the form $\pm \alpha x(\ln x)^{2} \pm \beta x \ln x \pm \gamma x$, subtracts and applies $\ln 4=2 \ln 2$ at least once. Both M's must have been awarded
A1: Correct answer

It is possible to do $\int(\ln x)^{2} d x$ via a substitution $u=\ln x$ but it is very similar.
M1 A1, dM1: $\int u^{2} \mathrm{e}^{u} \mathrm{~d} u=u^{2} \mathrm{e}^{u}-\int 2 u \mathrm{e}^{u} \mathrm{~d} u,=u^{2} \mathrm{e}^{u}-2 u \mathrm{e}^{u} \pm 2 \mathrm{e}^{u}$
ddM1: Applies appropriate limits and uses $\ln 4=2 \ln 2$ at least once to an expression of the form $u^{2} \mathrm{e}^{u}-\beta u \mathrm{e}^{u} \pm \gamma \mathrm{e}^{u}$ Both M's must have been awarded

